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Abstract: We propose to study hadron-hadron scattering using lattice QCD in an asym-

metric box which allows one to access more non-degenerate low-momentum modes for a

given volume. The conventional Lüscher’s formula applicable in a symmetric box is modi-

fied accordingly. To illustrate the feasibility of this approach, pion-pion elastic scattering

phase shifts in the I = 2, J = 0 channel are calculated within quenched approximation

using improved gauge and Wilson fermion actions on anisotropic lattices in an asymmetric

box. After the chiral and continuum extrapolation, we find that our quenched results for

the scattering phase shifts in this channel are consistent with the experimental data when

the three-momentum of the pion is below 300MeV. Agreement is also found when compared

with previous theoretical results from lattice and other means. Moreover, with the usage

of asymmetric volume, we are able to compute the scattering phases in the low-momentum

range (pion three momentum less than about 350MeV in the center of mass frame) for

over a dozen values of the pion three-momenta, much more than using the conventional

symmetric box with comparable volume.
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1. Introduction

Hadron-hadron scattering experiments have offered us enormous amount of information

concerning the interaction among hadrons. In these experiments, scattering cross sec-

tions and phase shifts are obtained experimentally in various channels with definite quan-

tum numbers. On the theoretical side, although Quantum Chromodynamics (QCD) has

been recognized as the underlying theory of strong interaction, theoretical explanation of

hadronic scattering processes at low energies remains a challenging problem due to non-

perturbative features of the theory thereof. Lattice QCD (LQCD) is the only systematic,

non-perturbative method of QCD which in principle can be applied to calculate these low

energy physical quantities from first principles using numerical Monte Carlo simulations.

Calculation of hadron-hadron scattering phase shift is also a very important step to deepen

our understanding of the strong interaction beyond single hadron spectrum.

Lattice calculation of hadron scattering processes relies on a finite size method proposed

by M. Lüscher [1 – 5] in which two particle elastic scattering phase shifts (in the infinite

volume) are directly related to the energy levels of the two particles in a finite cubic box.

The latter can in principle be extracted in lattice simulations. Using this technique, the

scattering length and the scattering phase shifts for pion-pion scattering in the I = 2,

J = 0 channel have been studied [6 – 16] in both quenched and unquenched lattice QCD.

There also exist lattice calculations on other hadronic scattering processes using various

lattice actions.

grant No. 10421503, No. 10675005, No.10575107, No.10375031, No.10675101 and supported by the Trans-

century fund and the Key Grant Project of Chinese Ministry of Education (No. 305001) and KJCX3-SYW-

N2 (CAS).
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The lattice results on the pion-pion scattering phases can be compared with the exper-

imental data and results from other theoretical methods and impressive agreements were

seen [14 – 16]. However, since lattice results were obtained in a finite volume, the number

of low-momentum modes accessible for lattice simulation was limited. Part of the reason

is that, in all previous lattice studies, hadron scattering phase shifts were calculated in a

cubic box which has the same physical extension in all three spatial directions. In this

scenario, many low momentum modes are degenerate in energy such as modes (1, 0, 0),

(0, 1, 0) and (0, 0, 1) since they are related to one another by cubic symmetry. As a result,

one can only access very few low-momentum modes in the lattice calculation in a cubic

box. If one is interested in the scattering phases at more values of the scattering momenta,

larger physical volumes are required which makes the lattice simulation very costly. In

this paper, we propose to use asymmetric boxes to study hadron-hadron scattering on the

lattice. We test this idea in a quenched study on the pion-pion scattering in the I = 2,

J = 0 channel. If we denote the three-momentum of each pion in the center of mass frame

by k̄, within the range 0 < k̄2 < 0.1GeV2, we are able to obtain scattering phase shifts at

more than 12 different values of k̄2 while in calculations with comparable cubic volumes

this number is restricted to only a few.

This paper is organized as follows. In section 2, we briefly review the theoretical for-

malism for the computation of the phase shift in an asymmetric box, extending the finite

size technique suggested by Lüscher. The corresponding formulae are modified to the case

of asymmetric volume. Possible mixing with the J = 2 channel is discussed. In section 3,

some simulation details are given. Our results for the scattering phases, after chiral and

continuum extrapolations, are then compared with known results from previous lattice

calculations, chiral perturbation theory, dispersion relations and experimental data. Rea-

sonable agreements are found and the advantage of using the asymmetric box is addressed.

In last section, we will summarize this work and give some conclusions and outlooks.

2. Lüscher’s formulae extended to an asymmetric box

Consider a cubic box with size L×L×L and periodic boundary condition. In such a box, the

three momentum of a single pion is quantized as: k = (2π/L)n with n = (n1, n2, n3) ∈ Z
3,

where Z represents the set of all integers. In this paper, we are interested in two-pion

systems. Taking the center of mass reference frame of the two pions, we define k̄
2

of the

pion pair in a box as:

Eππ = 2

√

m2
π + k̄

2
(2.1)

where Eππ is the exact energy of a two-pion system with the two pions having three

momentum k and −k respectively in the center of mass frame. We further define q2 via:

k̄
2

=
4π2

L2
q2 (2.2)

Note that, because of the interaction between the two pions in the box, the value of q2 is in

general not equal to n2 with n ∈ Z
3. In fact, in the I = 2, J = 0 channel, the interaction

between the two pions is repulsive, making the value of q2 larger than the corresponding n2.

– 2 –



J
H
E
P
0
6
(
2
0
0
7
)
0
5
3

According to Lüscher’s method [4], two-pion s-wave elastic scattering phase shift can

be obtained from the following formula:1

cot δ(k̄) =
Z00(1, q

2)

π3/2q
, (2.3)

where the so-called zeta function Zlm is given by:

Zlm(s, q2) =
∑

n

Ylm(n)

(n2 − q2)s
. (2.4)

In this definition, Ylm(r) = rlYlm(Ωr), with Ylm(Ωr) being the usual spherical harmonics.

When the physical volume is large enough, Lüscher’s formula (2.3) can be expanded as

powers of 1/L. The resulting formula then relates the energy level of two hadron in a finite

box to the hadron elastic scattering length in the infinite volume. This provides a very

convenient way of computing scattering lengths on the lattice. The formula reads:

Eππ − 2mπ = − 4πa0

mπL3

[

1 + c1

(a0

L

)

+ c2

(a0

L

)2
]

+ O(L−6) (2.5)

where the coefficients c1 = −2.837297 and c2 = 6.375183, a0 is the ππ elastic scattering

length.

As explained in the introduction of this paper, many low momentum modes in a cubic

box are degenerate in energy due to cubic symmetry. Therefore, to compute the scattering

phases at more values of the scattering momenta, one usually has to use larger cubic

volumes. This makes the lattice calculation more costly. In this paper, we propose to use

an asymmetric volume which provides more non-degenerate low-momentum modes with

a relatively small volume. Lüscher’s original formula (2.3) is only valid in a cubic box.

To utilize similar finite volume techniques, we must generalize eq. (2.3) to the case of an

asymmetric box. This has been accomplished in [17, 18].

In an asymmetrical box with lattice size L × η2L × η3L, the momentum of a single

pion is quantized as: k = (2π/L)ñ with ñ ≡ (n1, n2/η2, n3/η3) and n = (n1, n2, n3) ∈ Z
3.

Quantities k̄ and q2 are still defined according to eq. (2.1) and eq. (2.2).

The symmetry group of the asymmetric box depends on the shape of the volume we

take in our lattice calculation. For definiteness, we choose η2 = 1 and η3 = 2 in this study

and the corresponding basic symmetry group is D4 which has 4 one-dimensional represen-

tations: A1, A2, B1, B2 and a two-dimensional irreducible representation E. Rotational

symmetry is broken and the corresponding representations for the rotational group with

definite angular momentum quantum numbers are decomposed accordingly:

0 = A+
1 , 1 = A−

2 + E− , 2 = A+
1 + B+

1 + B+
2 + E+ , · · · . (2.6)

The formula for the scattering phase shifts is now modified to:2

cot δ(k̄) = m00(q) ≡
Z00(1, q

2; η2, η3)

π3/2η2η3q
(2.7)

1This assumes that the contribution from higher angular momentum modes are negligible. In the cubic

case, the leading contamination is from l = 4.
2Again, we omit higher angular momentum contributions. In this case, the leading contamination is

from l = 2.
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with the modified zeta function Zlm defined as:

Zlm(s, q2; η2, η3) =
∑

n

Ylm(ñ)

(ñ2 − q2)s
(2.8)

The formula for scattering length is also changed accordingly:

Eππ − 2mπ = − 4πa0

η2η3mπL3

[

1 + c1(η2, η3)
(a0

L

)

+ c2(η2, η3)
(a0

L

)2
]

+ O(L−6) . (2.9)

where the coefficients c1(η2, η3) and c2(η2, η3) can be computed once η2 and η3 are given [17].

For the case η2 = 1 and η3 = 2, which is the situation studied in this paper, the two

coefficients are found to be:

c1(1, 2) = −1.805872 , c2(1, 2) = 1.664979 (2.10)

Therefore, just as in the cubic case, once the two-pion energy level Eππ is obtained in

Monte Carlo simulations, the corresponding phase shift δ can be obtained via modified

Lüscher’s formula (2.7).

It is noted that the representation A1 appears in both the J = 0 and J = 2 channel.

Therefore, in an asymmetric box, s-wave and d-wave scattering mix with each other. This

is to be compared with the cubic case where the lowest mixture to s-wave is from l = 4

sector. Assuming the d-wave scattering phases are small, one can estimate its effect on the

s-wave phase shift as follows [18]:

nπ − δ0(q) ≃ φ(q) + σ2(q) tan δ2(q) , (2.11)

where the angle φ(q) is defined via: − tan φ(q) = 1/m00(q). The function σ2(q) for D4

symmetry is given by:

σ2(q) =
m2

02(q)

1 + m2
00(q)

, (2.12)

which quantifies the effect due to d-wave mixing.3 On general grounds, one expects the

mixing due to higher angular momentum to be small in the low-momentum region. To

estimate its effect in the case of pion-pion scattering, we take experimental values for the

d-wave scattering phases presented in ref. [19]. We have checked this correction to our

s-wave phase shifts and it is found that these corrections are only of about 1 − 2%, much

smaller than our typical error bars for the phase shifts. Therefore, in what follows, we

simply neglect the effects of the d-wave contaminations.

3. Simulation details

To test our idea of using the asymmetric box on hadron-hadron scattering, we perform a

quenched study on the pion-pion scattering phase shift in the I = 2, J = 0 channel. In

this section, we will briefly introduce our numerical results.

3The explicit formula for the function m02(q) can be found in ref. [18].
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β us ν Lattice as(GeV −1) Number of Confs. κmax

2.080 0.7735 0.94 82 × 16 × 40 1.5677 464 0.0598

2.215 0.7852 0.95 92 × 18 × 48 1.3926 425 0.0602

2.492 0.8063 0.93 122 × 24 × 64 1.0459 105 0.0606

Table 1: Simulation parameters used in this work:

3.1 Lattice actions and simulation parameters

The gauge action used in this study is the tadpole improved gluonic action on anisotropic

lattices [20, 21]:

S = −β
∑

i>j

[

5

9

TrPij

ξu4
s

− 1

36

TrRij

ξu6
s

− 1

36

TrRji

ξu6
s

]

− β
∑

i

[

4

9

ξTrP01

u2
s

− 1

36

ξTrRi0

u4
s

]

(3.1)

where Pij is the usual spatial plaquette variables and Rij is the 2 × 1 spatial Wilson loop

on the lattice. The parameter us, which we take to be the 4-th root of the average spatial

plaquette value, incorporates the so-called tadpole improvement [22] and ξ designates the

(bare) aspect ratio of the anisotropic lattice, defined as the ratio between two spacings

as/at. With the tadpole improvement, experiences show that the renormalization effects

are small for this parameter. Thus, we have not distinguish the renormalized anisotropy

and the bare one. The anisotropic and improvement property of the lattice action makes

the calculation of heavier hadronic objects on coarser lattice possible. The parameter β is

related to the bare gauge coupling which controls the spatial lattice spacing as in physical

units. This type of improved gauge action on anisotropic lattices have been extensively

used in lattice calculations on glueballs [21, 23 – 26].

The fermion action used in this calculation is the tadpole improved clover Wilson

action on anisotropic lattice [27 – 29] whose fermion matrix reads: Mxy = δxyσ +Axy with

A given by:

Axy = δxy

[

1/(2κmax) + ρt

3
∑

i=1

σ0iF0i + ρs(σ12F12 + σ23F23 + σ31F31)

]

−
∑

µ

ηµ[(1 − γµ)Uµ(x)δx+µ,y + (1 + γµ)U+
µ (x − µ)δx−µ,y] (3.2)

where the coefficients are given by:

ηi = ν/(2us), η0 = ξ/2, σ = 1/(2κ) − 1/(2κmax),

ρt = cSW (1 + ξ)/(4u2
s), ρs = cSW /(2u4

s). (3.3)

In this notation, the fermion propagators with different quark masses could be solved at

the same time using the so-called Multi-mass Minimal Residual (M3R) algorithm [30 – 32].

The bare velocity of light parameter ν is tuned non-perturbatively using the single pion

dispersion relations [29, 33]. The parameters κmax is the largest one among all κ parameters

which corresponds to the lightest valence quark mass. The asymmetrical ratio ξ is always

fixed at ξ = 5. Other parameters in our simulation are tabulated in table 1.
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Quenched configurations are generated using the pure gauge action (3.1) with three

lattice sizes, 82 × 16 × 40, 92 × 18 × 48 and 122 × 24 × 64, corresponding to β = 2.080,

2.215 and 2.492, respectively. The values of β are chosen such that the physical volumes

for these three lattices remain the same. The correspondence of β and the spatial lattice

spacing as has been obtained in ref. [34]. The physical volume of our lattices is about

5.5fm3 which is large enough to bring the finite volume errors under control. For each

set of parameters, several hundreds of de-correlated gauge configurations are utilized to

measure physical quantities.

3.2 Hadronic operators and the extraction of one and two pion energies

To obtain energy levels for the single and two-pion systems on the lattice, we have to

construct appropriate correlation functions using the corresponding hadronic operators. In

this paper, single and two pion operators are constructed using local quark fields. For the

single pion operators, we use:

π+(x, t) = −d̄(x, t)r5u(x, t),

π−(x, t) = ū(x, t)r5d(x, t),

π0(x, t) =
1√
2
(ū(x, t)r5d(x, t) − d̄(x, t)r5u(x, t)) (3.4)

where u(x, t) and d(x, t) are the basic local quark field operators for the up and down

quark, respectively. In this study, the up and down quarks are taken to be degenerate in

mass so that isospin is a good symmetry. The operator which creates a single pion with

non-zero three momentum k from the vacuum is obtained by Fourier transform:

πa
k(t) =

1

V3

∑

x

πa(x, t)e−ik·x (3.5)

where the flavor index a of pions take values a = +,−, 0 and V3 is the three volume of the

lattice. By calculating correlation functions of single pion operators defined above, one can

obtain the single pion energy at vanishing and non-vanishing momenta.

The s-wave two-pion operators in the I = 2 channel are defined as:

On(t) =
∑

R

π+
R(kn)(t)π

+
R(−kn)(t + 1) , (3.6)

where n labels a particular mode with three-momentum kn; R(kn) is the rotated three-

momentum which is obtained from kn by applying a symmetry operation R ∈ D4, an

element of the corresponding point group. Therefore, the summation of R in eq. (3.6) guar-

antees that the operator thus constructed falls into the A+
1 representation of the symmetry

group whose continuum counterpart is s-wave for the rotational group, if the contamina-

tions from the l ≥ 2 sectors are negligible.

In order to obtain the two-pion energies, which is directly related to the scattering

phases we want to compute, we measure the correlation matrix among different non-

degenerate two-pion modes, using the two-pion operators defined in eq. (3.6):

Cmn(t) = 〈O†
m(t)On(ts)〉 . (3.7)
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Serial Number 0 1 2 3 4 5 6

Mode ñ (0,0,0) (0,0,1/2) (1,0,0) (1,0,1/2) (1,1,0) (1,1,1/2) (1,1,1)

Degenerate Mode ñ (0,0,1) (1,0,1) (0,0,3/2)

Table 2: The representative momentum of every mode. Mode 2, 4 and 5 have accidental degenerate

modes which are left out in the construction of two pion operators.

We then follow Lüscher and Wolff’s suggestion and constructed a new correlation matrix:

Ω(t, t0) = C(t0)
− 1

2C(t)C(t0)
− 1

2 (3.8)

where t0 is some suitable reference time. The eigenvalue λi(t) of this new matrix Ω is:

λi(t, t0) ∝ e−Ei(t−t0) (3.9)

It can be shown that [3] this eigenvalue avoids O(e−∆Et) errors and the energy eigen-

values could be extracted by a single exponential in t. We choose seven non-degenerate

momentum modes to construct the correlation function matrix (3.7). The representative

momentum of each non-degenerate momentum mode is tabulated in table 2. Note that

some modes might become accidentally degenerate in the continuum limit when rotational

invariance is completely restored. That is to say, two modes are degenerate in energy in

the continuum limit but they are not related to one another by any D4 transformation. In

table 2 we also list these accidental degenerate modes. Although for finite lattice spacings,

scaling violations will lift these degeneracies, the almost degenerate modes might make the

diagonalization procedure unstable. Therefore, in our study of the two-pion correlation

matrix, the accidental degenerate modes are left out in the construction of the two-pion

operators.

The single pion correlations at zero spacial momentum are constructed from the wall

source quark propagators. Effective mass functions are then used to extract the single pion

mass values. The mass plateaus are determined automatically by requiring the minimal

of χ2 per degree of freedom. All effective mass plateaus are plotted in figure 1. The

horizontal line segments in these figures represent the ranges of the plateaus from which

the pion masses are extracted. The errors for the data points are obtained from a standard

jack-knife analysis.

Similar analysis is performed for the two-pion correlation matrix. It is verified that the

symmetric off-diagonal matrix elements, Cij and Cji (i 6= j) of the matrix, are almost equal

to each other in all cases except for some high modes at large time slices. Therefore, in our

analysis, Cij and Cji (i 6= j) are simply averaged to construct a symmetric positive-definite

matrix. In the diagonalization procedure, we set t0 = 3 as the reference time. The effective

energies of two-pion energy levels are defined as Eππ(i, t) = ln( λi(t)
λi(t+1) ) where the index

i represents the i-th eigenmode and the energy plateaus Eππ are found accordingly. In

figure 2, the effective mass plateaus at β = 2.492 for various modes are shown. Data for

other values of β are similar. The corresponding values for k̄ can thus be obtained from

eq. (2.1) and the values for δ may be computed by eq. (2.7) for each set of bare parameters.

– 7 –
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Figure 1: The single pion effective mass plateaus are shown. The horizontal line segments in the

figure represent the fitting ranges of the plateaus.

β A0 (GeV−2) A1 (GeV−4) χ2/d.o.f range

2.080 -2.30(15) 0.44(16) 0.05 1–12

2.215 -2.27(14) 0.59(17) 0.04 1–8

2.492 -2.15(19) 0.82(20) 0.09 1–4

continuum limit -2.05(36)

χ2/d.o.f 0.18

Table 3: Chiral extrapolation fits of a0

mπ

using Scheme 1 and the continuum limit of the fitted

parameter A0 (the corresponding value in the chiral limit).

3.3 Results for the scattering length

It is found that the relative three momentum |k̄| for Mode 0 is far smaller than the corre-

sponding single-pion mass values. Therefore, δE = Eππ −2mπ can be obtained from Mode

0 ignoring the small three momentum effect. It is then easy to obtain the scattering length

a0 in this channel using formula (2.9) for every valence quark mass and β value. These

results are then used to perform the chiral extrapolation.

We use the quantity a0/mπ, which is finite in the chiral limit, for the chiral extrap-
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Mode 1

m eff

t

0 8 16 24 32 40 48 56 64
0.4

0.5

0.6
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m eff
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0.4

0.5

0.6

0.7

Mode 3

m eff

t

0 8 16 24 32 40 48 56 64

0.5

0.6

0.7

0.8 Mode 4

m eff

t
0 8 16 24 32 40 48 56 64

0.5

0.6

0.7

0.8 Mode 5

m eff

t

Figure 2: Effective mass plateaus of two-pion system at β = 2.492 after the diagonalization

procedure. The horizontal line segments in the figure represent the fitting ranges of the plateaus.

Results for other values of β are similar.

olation, as suggested by the CP-PACS collaboration [14]. The scale is set using the pure

gauge sector with the Sommer scale r0 = 0.5fm. In Chiral perturbation Theory (ChPT),

The m2
π dependence of the scattering length is known within Chiral perturbation theory

(ChPT) [35 – 37]. However, it is well-known that ChPT is only effective when mπ is small.

The pion mass range in our simulation (from 0.7 GeV to 1.5 GeV) is definitely beyond the

applicability range of ChPT. Therefore, we have attempted to parameterize our data for

– 9 –
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β A0 (GeV−2) A1 (GeV−4) A2 (GeV−6) χ2/d.o.f range

2.492 -2.24(16) 1.15(21) -2.24(6) 0.13 1–12

continuum limit -2.20(30)

χ2/d.o.f 0.02

Table 4: Chiral extrapolation of a0

mπ

at β = 2.492 using Scheme 2. With others still using Scheme

1, the continuum limit of parameter A0 is shown.

a0/mπ using either a linear function in m2
π:

a0

mπ
= A0 + A1m

2
π; , (3.10)

or a quadratic function in m2
π:

a0

mπ
= A0 + A1m

2
π + A2m

4
π . (3.11)

These two methods will be referred to as Scheme 1 and 2. It is found that only the data

at β = 2.492 show significant curvature in the pion mass regime that we are studying.

For the other two β values, quadratic fits do not give statistically more favorable results.

Therefore, we only attempted Scheme 2 for β = 2.492. The fitting results in both schemes

are tabulated in table 3 and table 4. The fittings are also illustrated in the left panels of

figure 3 and figure 4.

Finally, a continuum limit extrapolation is performed to get rid of the lattice spacing

errors, using a functional form that is linear in a2
s. A possible linear term contamination

might be there but the coefficient of it is too small to be visible in the fitting. In figure 3

and figure 4 (right panels), we show the results for the continuum limit extrapolation. The

straight lines represent the extrapolation towards the as = 0 limit and the final results

are shown as circles. After the chiral and continuum extrapolations, our results for the

scattering length in this particular channel read:

a0mπ =

{

0.0399(70) , Scheme 1

0.0359(59) , Scheme 2
(3.12)

The two results are consistent with each other within errors. These results can also be

compared with analogous results obtained in other theoretical calculations [38, 39, 37,

40] and the experiment [41]. Our results of two schemes are both compatible with the

experiment and the result of Scheme 1 is consistent with the results from other theoretical

investigations. Our result for the scattering length also agrees with previous lattice results

obtained by other groups. Table 5 summarizes all relevant results for the scattering length

in this channel.

3.4 The scattering phase shift

We now come to the results for scattering phases. Pion scattering phases can also be

computed in the low-energy regime within chiral perturbation theory [35, 36]. However,

as already mentioned above, the formulae thus obtained are only applicable for very light

– 10 –
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a0mπ a0mπ

JLQCD (LIN)[8] -0.0406(47) CP-PACS (quenched) [14] -0.0558(56)

JLQCD (EXP)[8] -0.0410(69) E865 Collaboration [41] -0.036(9)

C.Liu (Scheme 1)[10] -0.0342(75) Current algebra [38] -0.046

C.Liu (Scheme 2)[10] -0.0459(91) CHPT (one-loop) [39] -0.0423(10)

X.Du [12] -0.0467(45) CHPT (two-loop, Roy eq.) [37] -0.0444(10)

CP-PACS (unquenched) [15] -0.0266(16) Dispersion relations [40] -0.0440(11)

Table 5: A summary of results for the pion-pion scattering length.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
-2.6
-2.5
-2.4
-2.3
-2.2
-2.1
-2.0
-1.9
-1.8
-1.7
-1.6
-1.5
-1.4
-1.3
-1.2
-1.1
-1.0
-0.9
-0.8

 =2.080
 =2.215
 =2.492

a
0
/m

 (GeV2)

m 2  (GeV2)

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10
-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

a
0
m = -0.0399(70)

-2.05(36)
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Figure 3: Left panel: chiral extrapolation of the quantity a0

mπ

using Scheme 1 as described in the

paper. Right panel: the corresponding continuum limit extrapolation of the quantity a0

mπ

. The

extrapolated result is indicated by a solid circle near as = 0.

pion mass and low scattering momenta. We therefore used a method that has been used

in quenched studies by the CP-PACS Collaboration [14, 42, 15], namely we simply param-

eterize the scattering phases with a polynomial in m2
π and the momentum. Our method is

a modified version of their methods.

CP-PACS Collaboration [14, 42, 15] defines a scattering amplitude as follows:

A(mπ, k̄) =
tan δ(k̄)

k̄
· Eππ

2
(3.13)

where k̄ = |k̄|. Then, they used a polynomial function in both m2
π and k̄2 to fit their

simulation data. However, if some of the phase shifts data exceede the limit −90◦, since

the function A(mπ, k̄) defined above involves the tan function which is discontinuous at

−90◦, this makes the amplitude A(mπ, k̄) discontinuous as well which is not convenient for

chiral extrapolations. To overcome this difficulty, we parameterize the phase shift δ itself

by a polynomial in both m2
π and k̄2 as:

δ(m2
π , k̄2) = D00 + D10m

2
π + D20m

4
π + D01k̄

2 + D11m
2
πk̄2 + D02k̄

4 (3.14)

The above function includes all terms with powers not larger than four. We have tried
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Figure 4: Left panel: chiral extrapolation of a0

mπ

at β = 2.492 using Scheme 2 while keeping other

beta values extrapolated in Scheme 1. Right panel: the corresponding continuum limit extrapolation

of the quantity a0

mπ

. The extrapolated result is indicated by a solid circle near as = 0.

β D10 (GeV2) D20 (GeV4) D01 (GeV2) D11 (GeV4) D02 (GeV4) χ2/d.o.f

2.080 -24.8(33) 10.9(19) -165(11) -133.8(96) 259(16) 0.98

2.215 -18.8(23) 6.7(19) -161.2(74) -104.8(61) 190.8(99) 2.05

2.492 -11.6(19) 3.42(91) -191.3(92) -69.5(36) 252(12) 0.77

continuum limit -1.4(41) -1.9(25) -213(19) -20.2(92) 254(25)

Table 6: Fitted results for the scattering phase shifts δ at each β. The continuum limit for each

parameter is also shown.

polynomial functions with higher powers but found that they had not improved the fitting

quality. Note that in quenched lattice QCD, since the chiral behavior is different from

true QCD, physical quantities can suffer from bad chiral behaviors [43]. For example, in

the above fitting formulae, a non-vanishing constant term D00 can exist, which would be

absent in true QCD due to chiral symmetry. In practice, by fitting of our quenched data,

we find that D00 is always consistent with zero within statistical error when we regard it

as a free parameter. Therefore, in the following discussion D00 is fixed to zero.

All fitting results for Dij are tabulated in table 6. The χ2/d.o.f of β = 2.215 is

somewhat large but still acceptable. In figure 6, we plot the fitted results for the phase

shift δ as a function of momentum k̄
2

while setting mπ to zero (chiral limit). Results for

three β values are all shown in this figure with different symbols. The results for different

lattice spacings tend to agree with one another in the low-momentum limit and deviate in

the large momentum limit as expected. We then perform the continuum limit extrapolation

of various coefficients Dij by using a function linear in a2
s. All extrapolations tabulated in

table 6 are good except for D02. The continuum extrapolations are also shown in figure 5.

After the continuum extrapolation, the results for the phase shift as a function of k̄
2

are

plotted in figure 6 with upside-down triangles.

Our results can be compared with previous quenched lattice results from CP-PACS

collaborations [14] and unquenched results from NPLQCD [16]. We find that they agree
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Figure 5: The continuum limit extrapolation of the parameter Dij . The solid circles near as = 0

represent the corresponding continuum limit values.

with each other within errors. Due to the asymmetric box used in this study, we are

able to compute the phase shifts at more values of scattering momentum compared with
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Figure 6: The values of the phase shifts δ after the chiral extrapolations at three values of β. The

data points are labeled using squares, circles and triangles for three values of β respectively. Also

shown are the continuum limit results of the phase shift which are labeled by upside-down triangles.

similar calculations using a symmetric box. For example, in ref. [14], scattering phases

are obtained at five values of k̄2 in the range from 0.02GeV2 to 0.34GeV2. By using an

asymmetric box, even in a smaller range of 0.02GeV2 to 0.12GeV2, we have over a dozen of

data points for the phase shift which can be compared with results from other theoretical

investigations and the experiments in more detail.

Finally in figure 7, we have shown the the same result for the phase shifts δ in the

continuum limit together with the experimental results from CERN-Munich group [19]. It

is seen that our final results agree with the experimental results within errors for k̄
2

below

0.1 GeV2 which is about
√

s = 0.6 GeV. At higher energies, our results deviate from the

experimental results. This deviation might be caused by the systematic uncertainties in our

calculation, e.g. quenching and chiral extrapolations. Numerically speaking, it is largely due

to poor determination of the coefficient D02. However, we would like to point out that, it is

clear from our quenched calculation that, the asymmetric volume technique advocated here

would also be useful for unquenched studies once the unquenched configurations become

available.

4. Conclusions

In this paper, we propose to study hadron-hadron scattering processes on lattices with

asymmetric volume. This setup has the advantage that it provides much more non-

degenerate low-momentum modes with a relatively small volume, allowing more detailed

comparison both with the experiments and with other theoretical results. To illustrate the
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Figure 7: Comparison of our lattice results for the scattering phase shifts with the experimental

data from CERN-Munich [19]. Results are consistent with each other for k2 below 0.1GeV2 which

roughly corresponds to the center of mass energy of about 0.6GeV.

feasibility of this proposal, pion pion scattering length and scattering phases in the I = 2,

J = 0 channel are computed within quenched lattice QCD using clover improved lattice

actions on anisotropic lattices. Our quenched results indicate that the usage of asymmetric

volumes indeed allow us to access much more low-momentum modes than in the case of

cubic volume of similar size. For k̄2 in the range of 0.02GeV2 to 0.12GeV2, we have over a

dozen of data points for the phase shift, much more than that in the cubic case with similar

volume. It is also noted that, in the low-momentum region, after the chiral and continuum

extrapolations, our results for the scattering length and the scattering phase shifts are in

good agreement with the experimental data and are consistent with results obtained using

other theoretical means.

Although our calculation is now performed in the quenched approximation, similar

calculations are also possible in the unquenched case once the gauge field configurations

become available. Finally, we have only computed scattering length and phases in the

I = 2, J = 0 channel. Phenomenologically speaking, other channels, in particular I =

J = 0 channel, are more interesting. However, this channel is difficult for two main

reasons: One needs to perform a full QCD calculation otherwise the theory is sick in the

chiral limit [43]; one has to deal with vacuum (disconnected) diagrams which significantly

increase the amount of computational cost. Also interesting and equally challenging is

the I = J = 1 channel where one would expect to see a rho resonance [44]. We expect

the use of asymmetric volumes should also be beneficial in these studies since a lot more

low-momentum modes become accessible in an asymmetric box.
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